Defense Sciences Office

Dr. Stefanie Tompkins

January 6, 2015

Formed in 1958 to **PREVENT** and **CREATE** strategic surprise.

Capabilities, mission focused

Finite duration projects

Diverse performers

Multi-disciplinary approach...from basic research to system engineering

Making pivotal early investments that change what's possible...

Defense Sciences Office

Who we are:

- A collaborative team of diverse, opportunistic technology entrepreneurs
- "DARPA's DARPA" office that creates DoD opportunity from fundamental scientific discovery
- Informed, but not constrained, by current trends and conflicts

What we do:

- Invest in multiple, often disparate, scientific disciplines
- Reshape existing fields or create entirely new disciplines (sometimes when the payoff to DoD may not be fully understood)
- Harvest and accelerate the development of promising breakthroughs to create enabling technologies for broad impact against national security challenges

The Nation's first line of defense against scientific surprise

DARPA Technical Offices

ВТО	DSO	120	МТО	STO	TTO
Biology, Technology & Complexity	Discover, Model, Design & Build	Information, Innovation & Cyber	Electronics, Photonics & MEMS	Networks, Cost Leverage & Adaptability	Weapons, Platforms & Space
Restore and Maintain Warfighter Abilities Harness Biological Systems Apply Biological Complexity at Scale	Physical Sciences Mathematics Transformative Materials Supervised Autonomy Novel Sensing and Detection Harnessing Complexity	Data Analysis at Massive Scales ISR Exploitation	Biological Platforms Computing Electronic Warfare Manufacturing Novel Concepts Photonics Positioning, Navigation and Timing Thermal Management	Battle Mgmt, Command & Control Comms & Networks ISR Electronic Warfare Positioning, Navigation and Timing	Air Systems Ground Systems Marine Systems Space Systems

Major Factors Shaping DARPA Investments Today

Wide range of national security challenges: evolving nation states, shifting networks

Powerful, globally available technologies set a fast pace

Military systems' cost, pace, and inflexibility limit our operational capabilities

National Security Challenges

- Wide range of national security challenges: evolving nation states, shifting networks
 - Can we counter the diversity of national security threats by rapidly accelerating scientific discovery and innovation?
 - Can we better detect and manage CBRNE materials to counter threats arising from the erosion of boundaries?
- Powerful, globally available technologies set at a fast pace
 - Can we speed the creation of new capabilities and remove technology barriers to rapid or low volume production?
- Military systems' cost, pace, and inflexibility limit our operational capabilities
 - Can we harness complexity and manage uncertainty/risk in the systems we build?

DARPA Bubbling Technology Opportunities

???

(Tell us what you think they are)

We look forward to your ideas.

Backups

Mission: Breakthrough Technologies for National Security

These new capabilities require a healthy ecosystem across Service S&T, universities, and industry DARPA's role: pivotal early investments that change what's possible

Program Managers

Fariba Fahroo Mathematics

Mark Micire Robotics

James Gimlett Physics

Prem Kumar Quantum and Nonlinear Optics

Judah Goldwasser Structural Materials

Doran Michels Ground Combat Systems

Michael Maher Materials and Manufacturing

Gill Pratt Robotics and Neuromorphic Systems

John Main Material System Innovation

Tyler McQuade Chemistry

Predrag Milojkovic Imaging and Optics Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Reza Ghanadan Complexity Science

Vincent Tang **Applied Physics**

DARPA DSO Office History

Supervised Autonomy

Development of theory, tools, and components to enable extended autonomous activity in unstructured, infrastructure-poor environments

Transformative Materials

Decoupling and control of countervailing material properties; design and fabrication of new materials across multiple length scales

Novel Sensing and Detection

New approaches to sensing and detecting CBRNE materials and devices

© Robert Llewellyn/Corbis

Physical Sciences

Exploration of scientific breakthroughs and boundaries that enable unique capabilities for national security

Harnessing Complexity

Exploration of the science of complexity, and its application to new engineering paradigms

Mathematics

Development of advanced mathematics and modeling tools